
CSCI2510 Computer Organization

Lecture 09:

Basic Processing Unit

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 2.13, 5

mailto:mcyang@cse.cuhk.edu.hk

I/O

Input

Output

Memory

Processor / CPU

Registers

Control

Arithmetic and

Logic Unit

• Input: accepts coded information from human operators.

• Memory: stores the received information for later use.

• Processor: executes the instructions of a program stored in the memory.

• Output: reacts to the outside world.

• Control: coordinates all these actions.

Basic Functional Units of a Computer

2CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Outline

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

3CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Basic Processing Unit: Processor

• Executing machine-language instructions.

• Coordinating other units in a computer system.

• Used to be called the central processing unit (CPU).

– The term “central” is no longer appropriate today.

– Today’s computers often include several processing units.

• E.g., multi-core processor, graphic processing unit (GPU), etc.

4CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Main Components of a Processor

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 5

Instruction Address Generator

Program Counter (PC)

Keep the address of the next instruction

to be fetched and executed (special register)

Update the contents of PC

after every instruction is fetched

Control

Circuitry

Interpret/decode the fetched instruction &

issue control signals to coordinate all the other units

Processor–Memory Interface

Allow communication between processor and memory through two special registers:

memory address register (MAR) and memory data register (MDR)

Register

File

(i.e., R0~Rn-1)

Served as the processor’s general-purpose registers

Arithmetic and

Logic Unit (ALU)

Perform arithmetic or logic operations

Hold the instruction until

its execution is completed (special register)

Instruction Register (IR)

Other Special Registers
Other Special Registers

Other Special Registers

E.g., memory address register, memory

data register, condition code register, stack

pointer register, link register, etc.

Recall: Processor-Memory

• Data transferring takes place through MAR and MDR.

– MAR: Memory Address Register

– MDR: Memory Data Register

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 6

Up to 2k addressable

MDR

MAR

k-bit
address bus

(byte-addressable)

n-bit
data bus (unit: word)

Processor Memory

memory locations

Word length = n bits

Control lines

(, MFC, etc.)WR /

*MFC (Memory Function Completed): Indicating the

requested operation has been completed.

Recall: RISC vs. CISC Styles

• There are two fundamentally different approaches in

the design of instruction sets for modern computers:

1) Reduced Instruction Set Computer (RISC) reduces the

complexity/types of instructions for higher performance.

• Each instruction fits in a single word in memory.

• A load/store architecture is adopted.

– Memory operands are accessed only using Load/Store instructions.

– The operands involved in arithmetic/logic operations must be either in

registers or given explicitly within the instruction.

2) Complex Instruction Set Computer (CISC) allows more

complicated but powerful instructions to be designed.

• Each instruction may span more than one word in memory.

• The operands involved in arithmetic/logic operations can be in both

registers and memory or given explicitly within the instruction.

• Two-operand format is usually used.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 7The processor design is affected by the instruction set design!

Outline

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

8CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Five-Stage Organization (RISC CPU)

• The execution of RISC instructions can be generally

organized into a five-stage sequence of actions:

 Fetch an instruction and increment the PC.

 Decode the instruction & read source registers.

 Perform an ALU operation.

 Read or write memory data if memory operand is involved.

 Write the result into the destination register.

Note: Not all these actions have to be carried out by every instruction.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 9

Fetch Phase Execution Phase

Stage 

Destination

Register

Stage 

Instruction

Fetch

Stage 

Source

Registers

Stage 

ALU

Stage 

Memory

Access

Multi-Stage Structure: Datapath

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 10

• The processor’s hardware

can also be organized

into multiple stages.

– The actions taken in each

stage can be completed

independently and in one

clock cycle (hopefully).

• It is necessary to insert

inter-stage registers to:

– Hold the produced results;

– Work as inputs to the next.

• This multi-stage structure

is often called datapath.

MuxB

ALU

A B

C

MuxY

InA InB

MDR MAR

M
e
m

Register

File

(R0~Rn-1)

RZ

RA RB

RY

RM

4

5

3

2

5

Outline

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

11CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Fetch Phase: Stage 

• The fetch phase includes

two major actions:

1) IR  [[PC]]

• Load the memory contents

pointed to by PC into IR.

• The MuxMA is set to select

the address from PC.

• IR_enable must be set.

2) PC  [PC] + 4

• PC_enable must be set.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 12

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

MA_sel

control signals
...

R/W

MFC

Instruction

Address

Generator

Adder

PC MuxINC

4
Branch offset

from IR

IR_enable PC_enable

PC_enable

INC_sel

Execution Phase: Stage 

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 13

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

• The execution phase is

generally of four stages:

 Decode the instruction &

read source registers.

• [IR] must be firstly decoded

by Control Circuity.

– It is for generating signals

to control all the hardware.

• Two source registers can be

read from Register File at

the same time.

– How? The source register

addresses are supplied by

IR directly (w/o decoding).

– Two source registers are

always read and placed

into RA and RB (no matter

whether they are needed).

Instruction Encoding

• Consider a RISC-style processor that

– Has 32 general-purpose registers;

– Represents every instruction by a 32-bit word.

• Representative encoding formats include:

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 14

Rsrc1 Rsrc2 Rdst OP code

31 27 26 22 21 17 16 0

Rsrc Rdst
Immediate
operand

OP
code

31 27 26 22 21 6 5 0

Address
OP
code

31 6 5 0

 Three-Operand Format
• E.g., Add, Rdst, Rsrc1, Rsrc2

 Immediate-Operand Format
• E.g., Add Rdst, Rsrc, #Value

• E.g., Load/Store instruction using

register indirect or index modes

• E.g., Branch instruction using offset

 Address-Operand Format
• E.g., Branch instruction

• E.g., Call instruction

The instruction encoding varies (a lot) from machine to machine!

Execution Phase: Stage 

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 15

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

B_sel

ALU_op

• The execution phase is

generally of four stages:

 Perform ALU operation.

• The input InA of ALU is

supplied by RA.

• The input InB of ALU is

supplied by the multiplexer

MuxB which forwards:

– Either the contents of RB;

– Or the immediate value

specified in IR.

• ALU performs the operation.

• The computed result is

placed in RZ.

• Note: [RB] is always

forwarded to RM (though it’s

only needed by Store).

Execution Phase: Stage 

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 16

• The execution phase is

generally of four stages:

 Read/write memory data.

• The memory read/write takes

place via Processor-Mem

Interface.

– The effective address is

derived by ALU and kept in

RZ in Stage .

– The “loaded” data are put

into RY (with the multiplexer

MuxY properly set).

– The “to-be-stored” data are

available in RM.

• Note: For non-Load and non-

Store instructions, the data

in RZ are forwarded to RY.

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

Y_sel MA_sel

R/W

MFC

Execution Phase: Stage 

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 17

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

RF_write
• The execution phase is

generally of four stages:

 Write the result into the

destination register.

• The data kept in RY, which

can be:

– Either the result computed

by ALU in Stage  and

forwarded to RY in Stage ;

– Or the data loaded from the

memory in Stage .

are written into Register File

if needed.

– The dest. reg. address is

from IR but is determined

by Control Circuitry.

– RF_write must be set.

Observations

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 18

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

control signals
...

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

• The datapath is designed

to be independent and

versatile.

• But not all actions/stages

have to be carried out by

every instructions.

• Let’s examine the actual

execution of the following

typical instructions:

– Add R3, R4, R5

– Load R5, X(R7)

– Store R6, X(R8)

– Branch

• Register Transfer Notation (RTN) describes the data

transfer from one location in computer to another.

– Possible locations: memory locations, processor registers.

• Locations can be identified symbolically with names (e.g., LOC).

 Contents of any location: denoted by placing

square brackets [] around its location name (e.g. [LOC]).

 Right-hand side of RTN: always denotes a value

 Left-hand side of RTN: the name of a location where the

value is to be placed (by overwriting the old contents)

R2 ← [LOC]

– Transferring the contents of memory LOC into register R2.

Ex.

Recall: Register Transfer Notation

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 19

Ex 1: Add R3, R4, R5

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 20

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction,
RA  [R4], RB  [R5]

 RZ  [RA] + [RB]

 RY  [RZ]

 R3  [RY]

• The source register addresses are

available in IR31-27 and IR26-22.
• As a result, [R4] and [R5] can be

read into RA and RB in Stage .

• MuxB is set to select input from RB.

• ALU is set to perform an Add.

• MuxY is set to select input from RZ.

• The dest. reg. address is in IR21-17.
• RF_write is set to allow writing R3.

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

B_sel

Y_sel

ALU_op

RF_write

Class Exercise 9.1

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 21

RA RB RZ RY R3









• Assume R3, R4, and R5 originally hold the values 0,

40, and 60, respectively.

• Considering Add R3, R4, R5, show the registers’

contents “after” the completion of Stages  to :

– Note: Fill in “?” for those blanks that cannot be determined.

Ex 2: Load R5, X(R7)

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 23

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction,
RA  [R7]

 RZ  [RA] + X

 MAR  [RZ], Read memory,
Wait_MFC, RY  [MDR]

 R5  [RY]

• The src. reg. address is in IR31-27.

• The immediate value X is from IR.

• MuxB is set to select input from IR.

• ALU is set to perform an Add.

• MuxMA is set to select input from RZ.

• MuxY is set to select input from MDR.

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

Y_sel

ALU_op

RF_write

B_sel

MA_sel

R

MFC• The dest. reg. address is in IR26-22.
• RF_write is set to allow writing R5.

Class Exercise 9.2

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 24

RA RB RZ RY MAR MDR R5 R7









• Assume R5 and R7 originally hold the values 0 and 4,

respectively, and the contents of main memory are

shown as follows:

• Considering Load R5, 4(R7), show the registers’

contents “after” the completion of Stages  to :

– Note: Fill in “?” for those blanks that cannot be determined.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 …

9 8 7 6 5 4 3 2 1 0 …

Ex 3: Store R6, X(R8)

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 26

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction,
RA  [R8], RB  [R6]

 RZ  [RA] + X, RM  [RB]

 MAR  [RZ], MDR  [RM],
Write memory, Wait_MFC

 No action

• The immediate value X is from IR.

• [R6] is forwarded to  via RM.

• The src. reg. address is in IR31-27.
• The dest. reg. address is in IR26-22.

• MuxMA is set to select input from RZ.

• The written data are forwarded

from RM to MDR.

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

ALU_op

B_sel

MA_sel

W

MFC

Ex 4: Branch

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 27

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction

 PC  [PC] + branch offset

 No action

 No action

• The branch offset is from IR.

• MuxINC (in Instruction Address
Generator) is set to select offset.

Instruction

Address

Generator

Adder

PC MuxINC

4
Branch offset

from IR

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

PC_enable

INC_sel

PC_enable

Class Exercise 9.3

• Branch instructions typically use the address field to

specify an offset from the current instruction to the

branch target.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 28

• Given the program,

what is the required

offset for Branch
LOOP at the memory

address 140?

– Note: This program

finds out the smallest

number in a list.

LABEL ADDR. OPCODE OPERAND

100 Move R2, addr LIST

104 Clear R3

108 Load R4, N

112 Load R5, (R2)

LOOP: 116 Subtract R4, R4, #1

120 Branch_if_[R4]=0 DONE

124 Add R3, R3, #4

128 Load R6, (R2,R3)

132 Branch_if_[R6]≥[R5]LOOP

136 Move R5, R6

140 Branch LOOP

DONE: 144 Store R5, RESULT

Remark 1: Register Enabling

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 30

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

• Inter-stage registers

(i.e., RA, RB, RZ, RM, &

RY) are always enabled.

– The results from one stage

are always transferred to

the next for simplicity.

• The other registers (e.g.,

PC, IR, and Register File)

must not be changed in

every stage.

– They must be enabled only

at certain times.

• How? By setting PC_enable,

IR_enable and RF_write.

RF_write

IR_enable PC_enable

Remark 2: Memory Function Completed

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 31

R/W

MFC

• If data are in cache, the

stage can be completed

in one clock cycle.

• If data are not in cache,

the stage may take

several clock cycles.

– To handle such uncertainty:

• Processor-Memory

Interface generates the MFC

signal upon the completion of

a memory operation.

• Control Circuitry checks the

MFC signal during any stage

involving memory to delay

subsequent stage(s).

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

M
e
m

control signals
...

MFC

Outline

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

32CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Interconnect (CISC CPU)

• CISC-style instructions require a different and more

flexible organization of the processor hardware:

– Interconnect provides interconnections among other units

but does not prescribe any pattern of data flow.

– Inter-stage registers are not needed, but it is still necessary

to have some Temporary Registers.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 33

Interconnect

PC

Instruction

Address

Generator

IR

Control

Circuitry

CPU-Mem

Interface

Temporary

Registers

ALU

Register

File

To cache and main memory

Buses: Key to Transferring Data

• It is typical to use buses to implement Interconnect.

– A bus consists of a set of lines that enable data transferring

from any one device to any other (connected to the bus).

• There may be multiple devices connected to the bus:

– Only one can drive the bus at any given time.

– More than one can receive data from the bus at the same t.

– For this reason, switches () are often needed to allow

data to be transferred into or transferred out from a device.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 34

Bus

A
A-in A-out

B
B-in B-out

D
D-in D-out

C
C-in C-out

Three-Bus Implementation

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 35

Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

InA

InB

• It is common to interconnect

the processor hardware via

three buses:

– Why 3? Typical instruction format!

– Bus A and Bus B allow the data

transfer of two source operands

to ALU simultaneously.

– Bus C allows transferring the

result (computed by ALU) to the

destination operand.

– Note: Addresses for the three

ports of Register File are

generated by Control Circuity

(not shown in the figure).

Outline

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

36CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Instruction Fetching and Decoding

• All the instructions share the

same actions of fetching and

decoding:

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4

 Decode instruction

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 37

Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

• Bus B is used to send [PC] to CPU-Memory
Interface to fetch the instruction.

• The data read from the memory are sent to

IR over Bus C.

• Note: Wait_MFC is needed since the data

may be read from the main memory.



InA

InB

• [IR] is decoded by Control Circuity to

generate control signals (not shown).








Ex 1: Add R5, R6

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction (shown here)

 R5  [R5] + [R6]

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 38

Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

• [R5] is read from Register File and

transferred to InA of ALU via Bus A.

• [R6] is read from Register File and

transferred to InB of ALU via Bus B.

• ALU is set to perform an Add.

• The sum is stored back into R5 via Bus C.

InA

InB

• Note 1: Reading source registers cannot

proceed in parallel with the decoding, since

CISC-style instructions do not always use

the same fields to specify reg. addresses.

• Note 2: Control Circuitry must carefully

coordinate how to read and write Register

File within the same step.



Ex 2: And X(R7), R9

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 39

• Assume the index offset is a

32-bit value given as the

second word of the instruction.

 MAR  [PC], Read memory,
Wait_MFC, IR  [MDR],
PC  [PC] + 4 (shown here)

 Decode instruction (shown here)

 MAR  [PC], Read memory,
Wait_MFC, Tmp1  [MDR],
PC  [PC] + 4

31 0

SourceOP code

Index Offset (X)

Dest. Other

• The second word (i.e., X) is fetched from

memory into the temporary register Tmp1.

Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

InA

InB


Ex 2: And X(R7), R9 (Cont’d)

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 40

 Tmp2  [Tmp1] + [R7]

 MAR  [Tmp2], Read memory,
Wait_MFC, Tmp1  [MDR]

 Tmp1  [Tmp1] AND [R9]

 MAR  [Tmp2], MDR  [Tmp1],
Write memory, Wait_MFC

• [Tmp1] and [R7] are sent to ALU over

Buses A and B, and the effective address

is placed into the temporary register Tmp2.

• The contents of memory address X(R7)
are read and placed into Tmp1.

• The AND computation is performed, and the

result is placed into Tmp1.

• The result is stored into the memory at the

address X(R7), which is “still” available in

Tmp2 since the completion of .

Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

InA

InB


Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

InA

InB


Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

InA

InB


Instruction

Addr. Gen.

CPU-Mem

PC

Register

File

ALU

IR

Temporary

Registers

Control

Bus

A

Bus

B

Bus

C

InA

InB


Class Exercise 9.4

• Consider the three-bus implementation of a CISC-

style processor design.

• How many times of memory accesses are involved in

Add R5, R6 and And X(R7), R9, respectively?

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 41

Outline

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

43CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Recall: Control Signals

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1 4444

MuxB

Register

File

(R0~Rn-1)

ALU

RZ

RA RB

RY

A B

C

MuxY

InA InB

RM

IR

MDR MAR

MuxMA

Addr.

Gen.
PC

reg.
addr.

Control

Circuitry

control signals
...

RB

PCMDRRZ

RB

RY MDR

IR

#
i
m
m
e
d
i
a
t
e

RA

RZ

B_sel

Y_sel MA_sel

ALU_op

RF_write

IR_enable

R/W

MFC M
e
mInstruction

Address

Generator

Adder

PC MuxINC

4
Branch offset

from IR
INC_sel

• The processor’s hardware

is governed by control

signals that determine:
– What is the input data appearing

at a Multiplexer’s output?

– What will be the operation

performed by ALU?

– Will the data be loaded into the

selected register?

– Etc.

PC_enable

PC_enable

1) Hardwired Control:

• The combinational circuit is used

to “hard code” the generation of

control signals with logic gates.

– The clock and counter specify the

current step (e.g., T1).

• It is a “hardware approach” and can

operate at high speed.

2) Microprogrammed Control:

• Control signals are specified by

“micro-programs” in Control Store.

– The micro-Program Counter (μPC)

always points to the next control word

(or μ-instruction).

• It is a “software approach” and can

support a complex instruction set.

CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

Control Store (Memory)
T
1

T
2

T
3

T
4

T
5

Control Signal Generation

• There’re two typical ways to generate control signals:

45

IR

μPC

T
1

T
2

T
3

T
4

T
5

0
0
1
.
.
.

μProgram

(Add)

μProgram

(Sub)

…

IR

Combinational Circuit

Step Counter Clock

 MAR  [PC], Read memory, Wait_MFC,
IR  [MDR], PC  [PC] + 4

T1

T2

T3

T4

T5

control signals ...

 MAR  [PC], Read memory, Wait_MFC,
IR  [MDR], PC  [PC] + 4

control signals ...

control

word

Summary

• Main Components of a Processor

• RISC-Style Processor Design

– Five-Stage Organization

– Instruction Execution

• CISC-Style Processor Design

– Multi-Bus Interconnect

– Instruction Execution

• Control Signal Generation

47CSCI2510 Lec09: Basic Processing Unit 2022-23 T1

